

PWM Output Module User Manual

Your Industrial Control Solutions Source

For use with the following:

.....

IO-SD0032PPWM

AW-10101171 REV00

Maple Systems, Inc. | 808 134th St. SW, Suite 120, Everett, WA 98204 | 425.745.3229

MapleSystems.com

Before You Start

This manual contains important information on the use and operation of this device. Please read all the information carefully for optimal performance and to prevent any damage or misuse of the device.

Safety symbols are classified into two categories, "WARNING" and "CAUTION".

Warning This symbol describes situations that could cause major or fatal injury to the user.

Caution This symbol describes situations that may cause minor injury or damage to the device.

SAFETY SYMBOLS USED IN THIS PRODUCT MEANS:

This symbol warns the user of potential hazards.

This symbol warns the user of uninsulated voltage within the unit that can cause dangerous electric shock.

Keep this manual nearby the user operating devices so it can be easily checked.

A-class equipment (Broadcasting communication equipment for business)

This product has passed the testing for electromagnetic waves for business use, and has not been designed or manufactured to be used as a household item; users are advised as such.

Design Precautions (AWarning)

Please install a safety circuit to protect entire control system in case of an unexpected power shut-down and PLC module malfunction. Such anomalies may severely compromise the integrity of the overall system.

External to the PLC, please install circuits and switches to safeguard the system from mechanical damages (ex. Emergency stop, upper/lower limit switches, forward/reverse direction interlocking circuits, etc)

When the PLC detects either of the following failure conditions, it may stop operation and turn off all outputs.

- The overcurrent protection or overvoltage protection of the power supply module is activated.
- The PLC CPU detected a failure, such as the watchdog timer error or module installation failure, with its self-diagnostic function.

In addition, all outputs may be turned on when there is a failure that the PLC CPU cannot detect, such as in the relay or TR terminal. Build an extra monitoring circuit that will monitor any output signal that could cause serious accidents.

A greater than normal current passed through the PLC for an extended period of time, or a short-circuited load flows in the output module may cause a fire.

Build a circuit that turns on the external power supply after the PLC power supply is turned on. If the external power supply is turned on first, it could result in output failure or malfunction.

In order to ensure that the system operates safely, please configure an interlock circuit in the scan program for the following situations.

- When exchanging data with computer or other devices.
- When operated by a computer or other devices.

Not doing so could result in output failure or malfunction.

Precautions for design (\triangle Caution)

Do not bundle the input/output signal or communications cables with the main circuit and power cables. They should be installed at least more than 100 mm (3.94 inches) apart. Not doing so could result in output failure or malfunction.

Precautions for mounting (\triangle Caution)

Use the PLC in the environment that meets the general specifications given in this manual. Using this PLC in any environment outside the range of the general specifications could result in electric shock, fire, malfunction, or damage to or deterioration of the product.

Please ensure that each module is installed correctly in its place. Loosely or incorrectly installed pieces may result in malfunction, failure, or free-fall.

Power supply in PLC should be turned off before mounting the module. Not doing so could cause an electric shock or damage to the device.

Install I/O devices or extension connectors correctly. If they are installed incorrectly, it may result in an input or output failure.

Do not convey direct vibration into PLC. Not doing so could cause electric shock, fire or malfunctions.

After wiring work, please make sure to close the terminal cover before turning on the power for the PLC system.

Precautions for wiring (\triangle Warning) =

Make sure to check the device's rated voltage and circuit arrangement before wiring. Failure to do so may cause electric shock or damage on the device.

Make sure to close the terminal cover before turning on the power of PLC system after wiring work. Failure to do so may cause electric shock.

Precautions for wiring (\triangle Caution)

Make sure to check device's regular voltage and sequence of terminals. Failure to do so may cause fire, electric shock and malfunctions.

Make sure to tighten the screw with standard torque. Loose connections may cause short, fire or malfunctions.

In grounding the FG ground terminals, be sure to conduct the product at least D type (Class 3) grounding. Not doing so could result in electric shock or malfunctions.

When wiring, make sure that wiring debris do not enter the module. Failure to do so may cause fire, equipment damage or malfunctions.

Precautions for test run and repair (AWarning)

Please do not touch the terminals when the power is ON. Doing so could cause an electric shock or malfunctions.

When cleaning or tightening the screw, turn off the power of PLC and all other systems. Failure to do so could cause an electric shock or malfunctions.

Do not charge, disassemble, heat up, short, or solder the battery. Doing so could cause the battery to heat up, rupture or ignite thereby harming the user.

Precautions for test run and repair (ACaution)

Do not dissociate the PCB from the module's casing or make any modifications to the device. Doing so may cause fire, electric shock or malfunction.

When mounting or separating the module, make sure to turn off power to PLC and all other devices. Failure to do so could cause an electric shock or malfunctions.

Use radio, walkie-talkie or cellphone devices at least 30cm away from the PLC. Not doing so could result in malfunction.

CONTENTS

1 Int	roduction	2
1.1 1.2 1.3	Features Design and Dimensions Configuring terminal blocks and names	4 5 6
2 Sp	ecification	7
2.1 2.2	General specification I/O Specification	7 8
3 Da	ta Memory	9
3.1 3.1 3.2	I/O Memory	9 9 11
4 Fu	nctions	13
4.1 4.2 4.3 4.4 4.4	Enable of PWM output (Buffer Memory Offset 0) Controlling frequency (Buffer Memory Offset 1 ~ 3) Controlling duty cycle (PWM) (Buffer Memory Offset 10 ~ 21) Ramp control 1 Frequency ramp control (Buffer memory Offset 5 ~ 7)	
4.4	.2 Duty cycle ramp control (Buffer memory Offset 30 ~ 41)	
5 Op	erating the PWM Output Module	19
5.1 5.2	Example for basic operation Practical Examples	19 21
6 Ma	aintenance work and repair	26
6.1 6.2 6.3	Maintenance work Repair Trouble shooting	26 27
Appen	dix 1 Using FROM·FROMP/TO·TOP Instructions	29
Appen	dix 2 Method of Address Allocation	34
INDEX		

1 Introduction

This manual will guide the reader through installation, functions, safety use and operation of the PWM output module (IO-SD0032PPWM) of the PLC-ES. This manual will need to be read and understood before attempting to install or use the device. Store this manual in a noticeable place so that you can take it out and read it whenever necessary. Contents of this manual is as below:

- Chapter 1 discusses the overview of the manual and introduces important features of the product.
- Chapter 2 explains the general and performance specifications of the product.
- Chapter 3 explains the types and features of the data memory stored in the product.
- Chapter 4 goes over the capacities of the product, and how to control the system.
- Chapter 5 guides the user through programming examples of the product.
- Chapter 6 explains repair and maintenance methods, and how to operate the device safely.

In order to run the device properly, the following specifications are required.

Product	Version
Software(MapleLogic)	V8.20 or above is recommended
PLC-ES CPU	V6.33 or above is recommended

Below is an instruction on how to check the latest version of the software and CPU.

Run the MapleLogic and click the [Help] - [About MapleLogic information] located in the upper right side of a menu bar. You can check the version of software in the dialog box.

[Figure 1] Route to check software version

Run MapleLogic and make a connection with PLC. Click the [Online] - [About PLC information] or the icon below. You can check the version of CPU firmware in the dialog box.

[Figure 2] Route to check CPU firmware

1.1 Features

PWM (Pulse-Width Modulation) is a digital output that can be used as an analog output by controlling the duty cycle that contains a certain frequency.

Maple Systems PWM Output Module has a pulse output function added onto the general digital output, so it has the same specifications as a IO-SD0032PPWN when used as a general digital output. The module:

- Provides general digital outputs up to 32 points.
- Supports for PWM pulse outputs up to 12 channels.

The PWM Output Module supports configurable functions such as controlling frequencies and duty cycles. You can control 4 channels as a group with one frequency, for a total of 3 groups.

Programming of the PWM pulse frequency can be done up to 4000pps, and the duty cycle of the output pulse range can be adjusted from 0.0% to 100.0%, in 1/1000 resolution.

Moreover, duty cycle can be controlled individually by each channel, for up to and total of 12 duty cycles are able to be controlled individually. In addition, the product supports the ramp control on the frequency and duty cycle.

<Summary>

- Programmable duty cycle of output pulse range is from 0.0% to 100.0%, in 1/1000 resolution.
- The maximum programmable PWM pulse frequency is 4000pps.
- Frequencies can be controlled in group with 4 channels as a unit, for a total of 3 groups.
- A total of 12 duty cycles are able to be controlled individually.
- The PWM device supports ramp control on frequency and duty cycle.

1.2 Design and Dimensions

[Figure 3] PWM module appearance

1.3 Configuring terminal blocks and names

Output Pin Map

-E- Y05 - Y15 -E-

 Image: Work of the second se

Each DC12/24V and DC GND are connected to the corresponding terminal internally.

Y13 — 💷

Y14 --------

Y16 ------

Y17 -------

Y19 ------

Y1A-L-

-C- Y03 0 0

-E- Y04 0 0

-<u>L</u>- Y08 - -

IO-SD0032PPWM	ACC-TB32M		-	í.	
Y00	A1		A1	-	1
Y01	B1			B1	
Y02	A2		A2		
Y03	B2			B2	h
Y04	A3		A3		Eroquanav
Y05	B3			B3	Group A
Y06	A4		A4		Group II
Y07	B4		A.C.	B4	-
Y08	A5		A5	0.5	
Y09	B5		4.0	B2	
YOA	A6		A6		6
YOB	B6			B6	Frequency
YOC	A7		A/	07	Group B
YOD	B7		4.0	В7	
YOE	A8		Að	DO	
YOF	B8		40	BS	
N.C	A9		A9	DO	
N.C	B9		A10	89	
DC12/24V	A10		AIU	D10	
DC12/24V	B10	_	A11	ыо	
Y10	A11		ATT	D11	
Y11	B11		A12	ын	
Y12	A12		AIZ	D12	
Y13	B12		A12	DIZ	
Y14	A13		AIS	B13	Group
¥15	B13		A14	ыл	Gloup c
¥16	A14		A14	B1/	
Y17	B14		A15	014	
118	AI5		AIO	B15	
¥19	B15		A16	DIO	
TIA VID	AIO D10		AIO	B16	
TIB V1C	A17		A17	010	
V1D	D17		Salassa.	B17	
V1E	A18		A18	- · · ·	
Y1E	B18		101.0	B18	
NC	A19		A19	5.0	
NC	B19			B19	
COM	A20		A20	-	
COM	B20	Чн		B20	
00.0					

External Connection

[Figure 4] Arrangement of terminals and its notations

2 Specification

2.1 General specification

Items		Standards										
Operating Temperature												
Preserving Temperature		-25 ~ 80 °C (-13 ~ 176°F)										
Operating Humidity	Re	lative Humidity	/ 5 ~ 95%, A	void condensa	tion							
Preserving Humidity	Re	elative Humidity	/ 5 ~ 95%, A	void condensa	tion							
	Frequency (Hz)	Continual ک Acceleration (الروز)	Vibration Amplitude (mm)	Intermittent Acceleration	t Vibration Amplitude (mm)	Number						
Inner Vibration	10 ≤ f ζ 57 57 ≤ f ≤150Hz	4.9 {0.5G}	0.035	9.8 {1G}	0.075	10 times for each direction X, Y, Z	IEC61131-2					
Inner Impact	N Pulse wave : a sine h	Aaximum impa Impr nalf-wave pulse	ect acceleration ression time : (3 times for times)	on:147 %(15 11ms each direction	G) ±X, ±Y, ±Z, t	otal on 3	IEC61131-2					
	Square wave impulse noise		±2k	V(10 minutes)			Internal Test Standard					
	Electromagnetism discharge		Voltage : 4	kV(Contact Dis	charge)		IEC61131-2 IEC61000-4-2					
Inner Noise	Radiation EMF Noise		27 ~	500 MHz 10V/	m		IEC61131-2 IEC61000-4-3					
		Power s Digital inp	supply Modu ut output (≥2	e 24V)	2kV 1kV		-					
	FAST transient burst Noise Digital input output (<24V) Analog input output Communication interface											
Ambient Conditions												
Operating Altitude		IEC61131-2										
Pollution level			≤2				IEC61131-2					
Colling System		A	ir natural coc	led								

[Table 1] General specification of PWM module

2.2 I/O Specification

3 Data Memory

Data memory is largely classified into two categories: I/O memory and buffer memory. I/O memory exchanges I/O data with the CPU through the X and Y area. Buffer memory exchanges user data with data areas in CPU module using FROM·FROMP/TO·TOP instruction.

[Figure 5] Data exchange between PWM module and CPU

3.1 I/O Memory

I/O memory is an input/output memory area which is provided by the module. This area can be operated in the scan program. The addresses of the X and Y are determined by the location where the module is mounted. Please refer to Appendix 2 for details. PWM output module can offer 32-pin output through the I/O memory area. Please refer to the table in 3.1.1 to check for more details of each point.

3.1.1 Output area

An output area of digital output module outputs the value of data received from the CPU.

- External indicator: LED (a LED per channel)
- 32 Y points (Yn0 ~ Y(n+1)F) ('n' states a number that can be decided by mounted in slots.

	Signal Direction : CPU → PWM Output Module											
Output	Signal Name	Output	Signal Name									
Y20	General output	Y30	General output									
Y21	General output	Y31	General output									
Y22	Frequency A, CH1, PWM output (or a general output)	Y32	Frequency C, CH9, PWM output (or a general output)									
Y23	Frequency A, CH2, PWM output (or a general output)	Y33	Frequency C, CH10, PWM output (or a general output)									
Y24	General output	Y34	Frequency C, CH11, PWM output (or a general output)									
Y25	General output	Y35	Frequency C, CH12, PWM output (or a general output)									
Y26	Frequency A, CH3, PWM output (or a general output)	Y36	General output									
Y27	Frequency A, CH4, PWM output (or a general output)	Y37	General output									
Y28	General output	Y38	General output									
Y29	General output	Y39	General output									
Y2A	Frequency B, CH5, PWM output (or a general output)	Y3A	General output									
Y2B	Frequency B, CH6, PWM output (or a general output)	Y3B	General output									
Y2C	Frequency B, CH7, PWM output (or a general output)	Y3C	General output									
Y2D	Frequency B, CH8, PWM output (or a general output)	Y3D	General output									
Y2E	General output	Y3E	General output									
Y2F	General output	Y3F	General output									

[Table 3] Usage of each point of PWM module

- X Stated points will follow the table above it the device is mounted in the first slot.
- All points can be used to emit as general output. The PWM output could only be operated as the points where it says 'PWM output'.

3.2 Buffer Memory

The PWM output module is equipped with shared memories inside to exchange the data with CPU. One of these is called buffer memory, which is a collection of word (16Bit)-unit data. This buffer memory is readable and configurable on scan program, using FROM·FROMP/TO·TOP instructions. Please refer to the Appendix 1 to get information about FROM·FROMP/TO·TOP instructions.

The PWM output module offers 64words of buffer memory in total. Following table shows the meaning and usage of each data.

OFFSET	Item	Set-up value parameter	Initial value	Access
0	PWM output Enable	BIT #0~#11 (Total 12 channels)	0	R/W
1	CH1,2,3,4 Frequency	0~4000(pps)	0	R/W
2	CH5,6,7,8 Frequency	0~4000	0	R/W
3	CH9,10,11,12 Frequency	0~4000	0	R/W
4	Available Later			
5	CH1,2,3,4 Frequency ramp control time(x10ms) Ex) When Frequency ramp control time is set to 100, 100 x 10ms = 1,000ms (1sec)	0~65535 (x 10ms)	0	R/W
6	CH5,6,7,8 Frequency ramp control time(x10ms)	0~65535	0	R/W
7	CH9,10,11,12 Frequency ramp control time(x10ms)	0~65535	0	R/W
8	Available Later			
9	Available Later			
10	CH1 duty cycle ratio Ex) When duty cycle ratio is set to 100, 100 x 0.1% = 10.0%	0~1000 (x 0.1%)	0	R/W
11	CH2 duty cycle ratio	0~1000	0	R/W
12	CH3 duty cycle ratio	0~1000	0	R/W
13	CH4 duty cycle ratio	0~1000	0	R/W
14	CH5 duty cycle ratio	0~1000	0	R/W
15	CH6 duty cycle ratio	0~1000	0	R/W
16	CH7 duty cycle ratio	0~1000	0	R/W
17	CH8 duty cycle ratio	0~1000	0	R/W
18	CH9 duty cycle ratio	0~1000	0	R/W
19	CH10 duty cycle ratio	0~1000	0	R/W

OFFSET	Item	Set-up value parameter	Initial value	Access
20	CH11 duty cycle ratio Ex) When duty cycle ratio is set to 100, 100 x 0.1% = 10.0%	0~1000 (x 0.1%)	0	R/W
21	CH12 duty cycle ratio	0~1000	0	R/W
22	Available Later			
30	CH1 duty cycle ramp time(x10ms) Ex) When Frequency ramp control time is set to 100, 100 x 10ms = 1,000ms (1sec)	0~65535 (x 10ms)	0	R/W
31	CH2 duty cycle ramp time(x10ms)	0~65535	0	R/W
32	CH3 duty cycle ramp time(x10ms)	0~65535	0	R/W
33	CH4 duty cycle ramp time(x10ms)	0~65535	0	R/W
34	CH5 duty cycle ramp time(x10ms)	0~65535	0	R/W
35	CH6 duty cycle ramp time(x10ms)	0~65535	0	R/W
36	CH7 duty cycle ramp time(x10ms)	0~65535	0	R/W
37	CH8 duty cycle ramp time(x10ms)	0~65535	0	R/W
38	CH9 duty cycle ramp time(x10ms)	0~65535	0	R/W
39	CH10 duty cycle ramp time(x10ms)	0~65535	0	R/W
40	CH11 duty cycle ramp time(x10ms)	0~65535	0	R/W
41	CH12 duty cycle ramp time(x10ms)	0~65535	0	R/W
	Available Later			
63	OS Version		0	R
	Available Later			

[Table 4] Usage and meaning of each buffer memory (PWM module)

- R/W represents for the module's Read/Write accesses from the CPU. (R: Read W: Write)
- All values in buffer memory will be erased and set to 0 when the power to the CPU is turned off or stopped.

4 Functions

PWM (Pulse-Width Modulation) is a digital output that can be used as an analog output by controlling the duty cycle that contains a certain frequency. Duty cycle is a ratio of the ON to OFF status in 1 cycle (pulse).

[Figure 6] Definition of PWM output and duty cycle

As illustrated above, the PWM controls the output from minimum to maximum values by changing the duty cycle of the pulse.

Maple Systems PWM output module can be either general digital output or PWM output. The general digital output can be used up to 32-pin points. From these 32-pin points, a total of 12-pin points support PWM output. Also, you can prevent drastic change of the frequency and duty cycle by using the ramp control.

4.1 Enable of PWM output (Buffer Memory Offset 0)

When PWM-capable points' BIT value is set to 0, it will be possible to use them as general output points. Similarly, if it is set to 1, it will be operated as PWM output. The PWM output function can be enabled by using TO instruction in the buffer memory Offset 0. Please refer to the 3.2 for information about the buffer memory.

BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT O	Buffer Memory Offset 0
	Disa	able		CH 12	CH 11	CH 10	CH 9	CH 8	CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	Channel No.

[Table 5] Enabled	l points of	PWM	output
-------------------	-------------	-----	--------

Example 1: Enable PWM Output

Example to enable PWM output of CH1, 3, 9 and output the frequency of CH1 to 1000pps and duty cycle to 50.0%.

BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT O	Buffer Memory Offset 0
0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	Binary (H0105)
	Disa	able		CH 12	CH 11	CH 10	CH 9	CH 8	CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	Channel No
моо —11									()	H0001)	HO	105 1
									()	H0001	1	0	500) 1

Operates as below when M00 is ON:

- a) Enable the PWM output in CH1, CH3, CH9.
- b) Set the frequency of CH1 as 1000pps.
- c) Set the duty cycle of CH1 as 50.0%.
- ▲ In case of power reset or CPU stop, enable the PWM output again by using TO instruction as all value of the buffer memory will be initialized to 0.

4.2 Controlling frequency (Buffer Memory Offset 1 ~ 3)

The PWM can control the range of frequency from 0pps to 4000pps, and 4 channels per group for a total of 3 groups. The frequencies of each group are set by TO instruction at OFFSET 1~3 area of buffer memory.

Frequ (or a gen	uency A eral output)	Frequ (or a gene	ency B ral output)	Freque (or a gener	Frequency C a general output) Y12 Y13 Y14 Y15	
CH1	Y02	CH5	YOA	CH9	Y12	
CH2	Y03	CH6	YOB	CH10	Y13	
CH3	Y06	CH7	YOC	CH11	Y14	
CH4	Y07	CH8	YOD	CH12	Y15	

The four PWM outputs within the same group are operated with a single frequency. Since three groups can be controlled, three different frequency outputs will be feasible.

When using TO instruction on the buffer memory, the output terminal outputs the designated frequency instantly. To prevent drastic change of frequency, please refer to the ramp control at 4.4.

▲ If the frequency value goes above 4000pps, both valid range of the duty cycle and the degree of precision will be decreased. Please be advised that this product guarantees stated performance up to 4000pps.

Frequency(pps)	Minimum value of duty cycle(%)	Maximum value of duty cycle(%)
5000	1.0	98.0
10000	1.5	95.0
15000	3.0	94.0
20000	4.0	93.0
25000	5.0	91.0
30000	6.0	89.0
35000	7.0	87.0
40000	9.0	85.0
45000	10.0	83.0
50000	12.0	82.0
55000	13.0	80.0
60000	14.0	78.0
65000	15.0	75.0

[Table 7] Valid setting range of duty cycle per frequency area

4.3 Controlling duty cycle (PWM) (Buffer Memory Offset 10 ~ 21)

The PWM provides functions to control the duty cycle from 0.0% to 100.0% with a 1/1000 resolution. Duty cycles can be controlled by a channel, for a maximum of 12 channels. Duty cycle can be set by using TO instruction at OFFSET 10~21 area of buffer memory. For more information, please refer to Section 3.2.

When using TO instruction on the buffer memory, the output terminal will be configured to set the duty cycle and being output. To prevent the drastic changes in the duty cycle, please refer to the section on ramp control (Sec 4.4).

[Figure 7] Example of duty cycle control (PWM)

If 70.0% of duty cycle is set for a digital signal of 12V/24V voltage, an average output of 8.4V/16.8V will be available. Duty cycle control(PWM) can be utilized in various way to substitute analog signal. For example, the velocity of motor or the ratio of valve opening (open/closed) can be configured.

Please note that if the value of the duty cycle is set to be greater than 100.0%, it will be recognized as a 100.0%.

4.4 Ramp control

Ramp control serves the purpose of preventing drastic changes in the pulse frequency and duty cycle. If ramp control is enabled (non-zero control time), the output changes gradually. If it is disabled (control time is set to zero), output signals change immediately, without any processing.

Please be advised that:

- A Ramp control time should be entered prior to the value for intended purposes.
- ▲ In case of power reset or CPU STOP during ramp operation, enter the value again by using TO instruction as all set value of buffer memory will be set back to initial value(0).

4.4.1 Frequency ramp control (Buffer memory Offset 5 ~ 7)

If frequency ramp control time is configured prior to a change in frequency value, any change in pulse frequency will be applied gradually. Frequency ramp control time can be operated by using TO instruction on buffer memory Offset 5 ~ 7.

- ▲ If frequency ramp control time is changed during ramp operation, the change will be applied not to the current operation, but to the next operation.
- ▲ In case of power reset or CPU STOP, enter the value again by using TO instruction as all value of buffer memory will be set back to initial value(0).

- a) Input the frequency ramp control time value 300(3seconds) to buffer memory Offset 5 by using TO instruction.
- b) Now, if 1000pps is entered into the buffer memory Offset 1, the new frequency value will be introduced gradually over 3 seconds.
- ▲ Note: Please perform step a) before step b).

4.4.2 Duty cycle ramp control (Buffer memory Offset 30 ~ 41)

If duty cycle ramp control time is configured prior to setting a duty cycle value, any change in the duty cycle will be applied gradually. The duty cycle ramp control can be operated by using TO instruction on buffer memory Offset 30~41.

- ▲ If duty cycle ramp control time is changed during ramp operation, the change will be applied not to the current operation, but to the next operation.
- ▲ In case of power reset or CPU STOP, enter the value again by using TO instruction as all value of buffer memory will be set back to initial value(0).

▲ Note: Please perform step a) before step b).

5 Operating the PWM Output Module

Through examples, this chapter outlines a method to configure a program using the PWM output module.

- ▲ In order to use the ramp control time as intended, please set up the ramp control time prior to inputting frequency or duty cycle values.
- ▲ In case of power reset or CPU STOP, enter the value again by using TO instruction as all value of buffer memory will be set back to initial value(0)

5.1 Example for basic operation

F12				TOP	H0001	0	2	1
ON_at_first _Scan_only						_	_	
				TOP	H0001	1	1000	1
				TOP	H0001	5	500	1
				TOP	H0001	11	500	1
				TOP	H0001	11	900	1
				TOP	H0001	31	300	1
				TOP	H0001	1	400	1
				TOP	H0001	5	300	1
				TOP	H0001	11	600	1
				TOP	H0001	31	200	1
								END
								PEND
F12 ON_at_first Scan_only				ТОР	H0001	0	2	1
eceive the Offset 1, 50 an be chan	M00 value 0 on Offse ged 0pps	e and tr et 5 and to 1000	igger th 500 on)pps for	e function. 1 Offset 11 k 5 seconds \ TOP	Enter 1 by using with a o	000 c g TOP duty c 1	on buffe instruct ycle of !	er mem tion so 50.0%
Receive the Offset 1, 50 an be chan	M00 value 0 on Offse ged 0pps	e and tr et 5 and to 1000	igger the	e function. Offset 11 k 5 seconds v TOP TOP	Enter 1 by using with a (H0001 H0001	000 c g TOP duty c 1 5 11	on buffe instruct ycle of ! 500 500	r mem tion so 50.0%
Receive the Dffset 1, 50 an be chan	M00 value 0 on Offse ged 0pps M01 value using TOF ls.	e and tr et 5 and to 1000 e. Enter P instruc	igger th 500 on 0pps for 900 on ction. Th	e function. Offset 11 k 5 seconds v TOP TOP buffer men ne duty cycle	Enter 1 by using with a d HODOT HODOT HODOT HODOT HODOT	000 c g TOP duty c 1 5 5 11 ffset 1 ges fro	on buffe instruc: ycle of ! 500 500 1 and 3 m 50.0	er mem tion so 50.0% 1 1 1 300 on % to 9
Receive the Dffset 1, 50 can be chan An an	M00 value 0 on Offse ged 0pps M01 value using TOF	e and tr et 5 and to 1000 e. Enter P instruc	igger th 500 on 0pps for 900 on ction. Th	e function. o Offset 11 k 5 seconds v TOP TOP TOP buffer men ne duty cycle	Enter 1 by using with a d H0001 H0001 H0001 h0001 H0001 H0001	000 c g TOP duty c 1 5 11 ffset 1 ges fro	on buffe instruct ycle of 9 500 500 1 and 3 m 50.0	er mem tion so 50.0% 1 1 1 1 300 on % to 9
Receive the Diffset 1, 50 an be chan an be chan III Receive the Diffset 31 by or 3 second Receive the Receive the Diffset 31 by or 3 second Receive the Diffset 31 by Diffset 31 by Di	M00 value 0 on Offse ged 0pps M01 value using TOF ls. M02 value P instruction	e and tr et 5 and to 1000 e. Enter on The	igger the 500 on 0pps for 900 on ction. Th 400 on frequer	e function. o Offset 11 k 5 seconds v TOP TOP top buffer men top top top buffer men top top	Enter 1 by using with a d HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT HODOT	000 c g TOP duty c 1 5 5 11 5 5 11 5 5 11 5 5 5 11 5 5 5 11 5 5 5 5 11 5 5 5 5 5 5 5 11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 10 7 0 P duty c 5 5 5 5 5 10 P duty c 5 5 5 5 10 7 10 P duty c 5 5 5 5 10 10 7 10 7 10 7 10 7 10 7 10	on buffe instruct ycle of ! 500 500 1 and 3 m 50.0 300 and 30 ps to 40	er mem tion so 50.0% 1 1 300 on % to 9 1 1 00 on C 00pps 1
Receive the Diffset 1, 50 an be chan an be chan III	M00 value 0 on Offse ged 0pps M01 value using TOF ls. M02 value P instruction	e and tr et 5 and to 1000 e. Enter on Enter on. The	igger the 500 on opps for 900 on ction. Th 400 on frequer	e function. o Offset 11 k 5 seconds v TOP TOP buffer men he duty cycle TOP buffer men hcy changes	Enter 1 by using with a d Hooon Hooon Hooon Hooon Hooon Hooon Hooon Hooon	000 c g TOP duty c 1 5 11 ffset 1 ges fro 11 31 ffset 1 1000p	on buffe instruct ycle of 9 500 500 1 and 3 m 50.0 900 300 and 30 ps to 40	er mem tion so 50.0% 1 1 300 on % to 9 1 1 00 on C 00pps 1
Receive the Dffset 1, 50 can be chan an be chan Acceive the Dffset 31 by or 3 second Cord Second Cord Cord Cord Cord Cord Cord Cord Cor	M00 value 0 on Offse ged 0pps M01 value using TOF ls. M02 value P instructi	e and tr et 5 and to 1000 e. Enter on Enter on. The	igger the 500 on opps for 900 on ction. Th 400 on frequer	e function. o Offset 11 k 5 seconds v TOP TOP buffer men ne duty cycle TOP buffer men ncy changes	Enter 1 by using with a d Hooon Hooon Hooon Hooon Hooon Hooon Hooon Hooon	000 c g TOP duty c 1 5 11 ffset 1 ges fro 11 ffset 1 1000p	on buffe instruct ycle of ! 500 500 1 and 3 m 50.0 900 900 900 900 900 900 900 900 900	er mem tion so 50.0% 1 1 300 on % to 9 1 1 00 on C 00pps 1 1 1
Receive the Diffset 1, 50 an be chan an be chan Receive the Diffset 31 by or 3 second Receive the Diffset 31 by or 3 second Receive the Diffset 31 by and the di	M00 value 0 on Offse ged 0pps M01 value using TOF ls. M02 value P instruction M03 value TOP instruction	e and tr et 5 and to 1000 e. Enter on. The e. Enter uction. T	igger the 500 on opps for 900 on ction. Th 400 on frequer 600 on The duty	e function. o Offset 11 k 5 seconds v TOP TOP buffer men he duty cycle TOP buffer men hcy changes TOP buffer men hcy changes	Enter 1 by using with a d Hooon Hooo	000 c g TOP duty c 1 5 5 11 ffset 1 ges fro 11 31 ffset 1 1000p 1 5 ffset 1 1000p	on buffe instruct ycle of ! 500 1 and 3 m 50.0 900 900 900 900 900 900 900 900 900	er mem tion so 50.0% 1 1 300 on % to 9 1 1 00 on C 00pps 1 1 1 1 200 on 50.0%
Receive the Diffset 1, 50 an be chan an be chan an a	M00 value 0 on Offse ged 0pps M01 value using TOF ls. M02 value P instructi M03 value TOP instru	e and tr et 5 and to 1000 e. Enter P instruction. The e. Enter e. Enter	igger the 500 on opps for 900 on ction. Th 400 on frequer 600 on The duty	e function. o Offset 11 k 5 seconds v TOP TOP buffer men he duty cycle TOP buffer men hcy changes TOP buffer men cycle changes	Enter 1 by using with a d HODOI HODO	000 c g TOP duty c 1 5 5 11 fset 1 ges fro 11 31 ffset 1 1000p 1 5 ffset 1 1000p	on buffe instruc: ycle of ! 500 500 1 and 3 m 50.0 900 900 900 900 900 900 900 900 900	er mem tion so 50.0% 1 1 300 on % to 9 1 1 00 on C 00pps 1 1 1 200 on 50.0%

5.2 Practical Examples

The following are examples about how to utilize PWM output module. Example 1 is about motor control using frequency ramp control function. Example 2 is about PID temperature control using frequency ramp control function and duty cycle.

Example 1: Softstart Using Ramp Control

This is an example to control an escalator using stepping motor control. Basic requirement of the system is as below.

<Requirements>

- It should be able to identify the number of passengers on board by counting who have been in-and-out through escalator sensor.
- Run the stepping motor when the number of passenger becomes 1 from 0.
- When the motor starts to run/activated, gradually increase the speed for 3 seconds then move to the maximum speed(4000pps) later.
- When the number of passenger on escalator becomes 0, wait 10 seconds then stop running.
- When the number of passenger on escalator does not change for 1 minute, then stop running.
- To stop the stepping motor, gradually decrease the speed for 3 seconds, then stop completely(0pps) later.

Entire scan program is as below.

43 R.6

(1) Initialize module parameter as below.

- Enable CH2 PWM (Buffer memory Offset 0)
- Initial frequency Opps (Buffer memory Offset 1), frequency ramp control time 3 seconds(Buffer memory Offset 5).
- Duty cycle 50.0% (Buffer memory Offset 11), No duty cycle ramp control time(Buffer memory Offset 31).

2 R.2	F12 ON_at_first _Scan_only		TOP	H0001	0	2	1	⊐
			TOP	H0001	1	0	1	그
				H0001	11	500	1	
			TOP	H0001	31	0	1	

(2) M00 checks passengers who go into the escalator, and M01 checks passengers who come out from the escalator. In case of passenger entering, increase the number of passenger(D0). In case of passenger exiting, decrease the number of passenger(D0) but only if the number is higher than 0.

28	MUU							
0.0						INCE	DO	Ц
n,u							50	1
31	M01							
D 4		D0	0			DECD	DO	L
H.4			U				DU	Ū.

(3) Check whether the number of passenger is 0 or higher than 0.-

37				M02
8.5	H >	DO	0	()
11.0	Ľ	00	•	
				MU3
				()

(4) In case the number of passenger is higher than 0, configure frequency to 4000pps. (As frequency ramp control time is set to 3 seconds, frequency will gradually increase from 0pps to 4000pps for 3 seconds.)

MU2						
		TOP	H0001	1	4000	1
		TUP	110001	1	4000	

(5) Check whether the passenger is on board and if there are none, configure the frequency to 0 after 10seconds. (As frequency ramp control time is set to 3 seconds, frequency will gradually decrease from 4000pps to 0pps in 3 seconds.)

49	MU3	5								
B.7			 	 			TON	TO	100	d -
53	TO									-
R.8	— ↑		 		TOP	H0001	1	0	1	-

(6) Check whether the number of passenger changes and if it does change, initialize the timer. But if it does not change for 1 minute, then set the frequency to 0pps and initialize the number of passenger.

59 R.9	-[=	DO	D1				MOV	DO	D1	그
71	т1						TON	T1	600	그
R.10	<u> </u>				TOP	H0001	1	0	1	그
							MOV	0	DO	그

Example 2: PWM PID Control

This is an example about PID temperature control of the heater which turns on at 24V and turns off on at 0V. Basic requirement of the system is as below.

<Requirements>

- Temperature value of the system should be controlled by PID control.
- MV value should be applied to control every second.
- The device should be controlled by the ON-OFF button.
- MV value with range from 0 to 16000 should be applied as range from 0.0% to 100.0% (Duty cycle control).

Entire scan program is as below.

(1) Create a new PID program.

Pgm001 ID: 1	OnlineEdit Buffer : 0
LD Program	Communication Configuration
© Scan © Subroutine © Cold Start initialization © Hot Start initialization ① Periodic Interrupts	Serial Protocol MODBUS/RTU Master Ethernet Protocol HighSpeed Link(E) MODBUS/TCP Master
Special Configuration	
Special Card init. PID Control SHSC Solutioning O Input Filter	
PWM for PLC-ES	SFC Program
	室 SFC Program
-	

Current Va Current L No. of Loo		Auto Tune Mon-Viev	Curren	t Lp. 1 ~	Help			
Current I No. of Loo	lue -> Set Value		-					
No. of Loop	oop Entire L	LD Convert	Iren	d Descri	ption			
	p	Start Data	of PID Con	trol				
Total 1	Loops/Scan	PIDINI	D 0	PIDCAL D	100			
urrent Loop	Cmt : <loop 1<="" th=""><th>></th><th></th><th></th><th>Edit</th><th></th><th></th><th></th></loop>	>			Edit			
	Inde	x	Device	Set Value	Curren			
th Calc(For	ward(0) Reverse(1))	D00002	Forward				
mpling Tir	me(0.01 - 60 sec)		D00003	1.00				
(0.0 - 3000	sec)		D00005	2000.0				
1(0.00 - 300) sec)		D00006	0.00				
V Low Limi	it(0 - 16000)		D00007	0.20				
V High Lim	nit(0 - 16000)		D00009	16000				
V Change F	Rate Limit(1 - 160	00) I filter Stability conditi	D00010	16000				
Ramp(0 -	1000 0:Disabled	d)	D00012	0				
n/Off Time	(0.00 - 60.00)		D00014	0.00				
(Process V	alue: 0 - 16000)		D00100	0				
V(Manipula	ation Value : 0 - 16	6000)	D00102					
nt(After Fil	lter)		D00103	0				
uto/Manua	I, Self Learning, Kr	px100	D00104	0x0000				
D Error Coo	de		D00015	0				
U Status Co	bue		000016					
		Q	C					
		Chable Chables	y C		i i			
2	ON_at_first _Scan_only			TOP	H0001	0	2	1
_						,		
C · C	requency a	and frequency ra	mp coi	ntrol time.	Set 1(1	pps) to	butte	
Set f		(r		x .			~ ~ ~	r memory
Set f Offse	et 1 and 0((frequency ramp	contro	ol time) to	buffer n	nemory	Offse	r memory et 5 by usi
Set f Offse TOP	et 1 and 0(instructior	(frequency ramp n.	contro	l time) to	buffer n	nemory	Offse	r memory et 5 by usi
Set f Offse TOP	et 1 and 0(instruction	(frequency ramp n.	contro	ol time) to	buffer n	nemory	Offse	r memory et 5 by usi
Set f Offse TOP	et 1 and 0(instruction	(frequency ramp).	contro	l time) to	buffer n	nemory	² Offse	et 5 by usi
Set f Offso TOP	et 1 and 0(instruction	(frequency ramp).	contro	ol time) to	hooon		² Offse	et 5 by usi
Set f Offs TOP	F12 Instruction F12 ON_at_first 	(frequency ramp).	contro	ol time) to	buffer n нооот нооот		2 1	r memory et 5 by usi
Set f Offs TOP	et 1 and 0(instruction	(frequency ramp).	contro	l time) to דסף דסף דסף	H0001 H0001 H0001		2 1 0	r memory et 5 by usi
Set f Offsi TOP	et 1 and 0(instruction	(frequency ramp	contro	I time) to	H0001 H0001	0 1 5	2 1 0	r memory et 5 by usi
Set f Offs TOP	et 1 and 0(instruction	(frequency ramp n. MV value from a	range	of 0 to 16	buffer n нооот нооот нооот 000 to а	nemory	2 1 0 0 of 0 t	to 1000. S
Set f Offso TOP	et 1 and 0(instruction	(frequency ramp). MV value from a before to D210 a	contro range and D2	of 0 to 16	buffer n нооот нооот нооот 000 to a ng MOV	nemory	2 0 0 0 0 0 0 0 0 0 0 0 0 0	r memory et 5 by usi
Set f Offs TOP	et 1 and 0(instruction	(frequency ramp). MV value from a before to D210 a	contro range and D2	of 0 to 16 11 by usir	buffer n нооот нооот нооот 000 to a ng MOV	nemory 0 5 a range instruc	of 0 t of 0 t	r memory et 5 by usi
Set f Offs TOP	et 1 and 0(instruction	(frequency ramp). MV value from a before to D210 a	contro range and D2	of 0 to 16 11 by usir	buffer n нооот нооот нооот 000 to a ng MOV	o o i s range instruc	² Offse	r memory et 5 by usi
Set f Offs TOP	F12 F12 ON_at_first scan_only F12 Figure the I e value of F12 ON_at_first Scan_only	(frequency ramp). MV value from a before to D210 a	contro range and D2	of 0 to 16 11 by usir	H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001	0 1 5 a range instruc	of 0 t of 0 t	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Set f Offs TOP	et 1 and 0(instruction F12 I oN_at_fist 	(frequency ramp). MV value from a before to D210 a	range and D2	of 0 to 16	buffer n нооот нооот нооот нооот 000 to a ng MOV	0 1 5 a range instruc	of 0 t o	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Set f Offs TOP	et 1 and 0(instruction F12 I oN_at_fist 	(frequency ramp). MV value from a before to D210 a	range and D2	of 0 to 16	H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001	nemory	2 1 0 0 of 0 t ttion. (15000	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Set f Offs TOP	et 1 and 0(instruction	(frequency ramp). MV value from a before to D210 a	range and D2	of 0 to 16 11 by usir	H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001 H0001	a range instruc	offse	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Set f Offso TOP Conf rang	et 1 and 0(instruction	(frequency ramp). MV value from a before to D210 a ured value to D21	range and D2	of 0 to 16 11 by usir	H0001 H000 H000 H000 H000 H00 H	nemory	offse	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Set f Offs TOP Conf rang	et 1 and 0(instruction	(frequency ramp). MV value from a before to D210 a ured value to D21	range and D2	of 0 to 16 11 by usir	HODOI HODOI	o 1 5 a range instruc Mov OV inst	offse	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Set f Offs TOP Conf rang Set t	et 1 and 0(instruction F12 I oN_at_first 	(frequency ramp). MV value from a before to D210 a ured value to D21	range and D2	of 0 to 16 211 by usir	H0001 H000 H00 H000 H000 H000 H00 H00 H000 H000 H0 H	o o instruc MOV OV inst MOV	offse	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Set f Offs TOP Conf rang Set t	et 1 and 0(instruction F12 ON_at_first 	(frequency ramp). MV value from a before to D210 a ured value to D21	range and D2	of 0 to 16 213 by u	H0001 H000 H00 H000 H000 H000 H	o o i s a range instruc Mov OV inst Mov	Offse 2 1 0 of 0 t tion. (16000 16000 16000	r memory et 5 by usi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(7)	Scale transform the MV value(D102) by to D200.	using SC	L instru	iction a	and sav	e the va	alue
31 R.4	F10 Always_ON _flag	SCL	D102	D200	D210	1	Ъ
(8)	Set the duty cycle by using configured I memory Offset 11 by using TOP instruct	0200 valu ion.	ue. Set	D200 v	value to	o buffer	r
31 R.4	F10 Always_ON	SCL	D102	D200	D210	1	Ъ
	_nag	TOP	H0001	11	D200	1	Э

6 Maintenance work and repair

It is recommended to have the PLC checked and diagnosed regularly to maintain its ideal performance. The following describes what is to be done in a maintenance work.

6.1 Maintenance work

✓ Daily checkup

There are two items that should be checked daily.

(1) LED status of module

LED of module	Item to check
Output module	Lighting when output On, lights out when output Off (Problems on besides states)

(2) Link status of cable

Check if the screws are tightly attached to the terminal of I/O modules.

✓ Maintenance

These are items that should be checked once every six months to a year. Also, it is required to do a maintenance work if there is a relocation of devices or shifts in wiring.

(1) General standard items

Item Item to check	
Operating temperature	-10 ~ 55℃ (14 ~ 131 °F)
Operating humidity	5 ~ 95% RH
Ambient conditions Avoid corrosive gases and dusts	

(2) Power supply voltage checkup

Check if the standard has conformity by measuring DC input voltage (DC 10~26V).

(3) Installation status of module

Check if the module is solidly mounted and debris-free.

6.2 Repair

Replacing a module √

If a module requires replacement due to damage or failure, the following procedure should be followed.

- a) Turn the PLC drive power supply off.
- b) Isolate the connector from PLC-ES.
- Remove Din rail fixing hook and remove the PLC. c)

1. To unlock the module, pull Din Rail Locks positioned underside of each module.

3. Pull extended Locks positioned at top and bottom of PLC-ES CPU until the click sounds.

the module from Din Rail.

4. Remove the extended module.

[Figure 8] Ejecting order in case of module replacement

6.3 Trouble shooting

This section describes errors that may happen during run-time and actions to be taken.

See the following items before making a judgement on PLC problems.

- (1) Check if the power is on. (Does PLC drive input voltage enabled normally?)
- (2) Check that each module is mounted (such as power supply, CPU, I/O, special modules) or wired (Such as I/O signal, cable) properly.

Please be advised that as the size of the scan program increases, response time will decrease accordingly.

See the following table for recommended actions when troubleshooting signal failures.

Error	Remedy
General output is disabled	 Check if the PLC module wired or mounted correctly. Check that the buffer memory (PWM enable) channel per BIT is OFF. The Y interface does not operate as general output in ON status.
PWM output is disabled	 Check if the PLC module wired or mounted correctly. Check that the buffer memory (PWM Enable, frequency, Duty cycle) is set properly. The PWM output operates when corresponding BIT per channel of PWM buffer is in ON status. Check if the frequency and the duty cycle are set properly. The PWM output does not operate when the frequency or the duty cycle is 0.

Recommended action for signal failures

Appendix 1 Using FROM·FROMP/TO·TOP Instructions

The Maple Systems PLC is composed of various special modules such as AD, DA, High Speed Counter, etc. All of these have a shared memory in their hardware for data exchange with CPU module. The CPU module can send various operation instructions, and receive data through shared memory. In the same way, a scan program can read from and write to shared memories of special module by using dedicated instructions to this purpose, FROM·FROMP and TO·TOP.

In the Maple Systems PLC system, shared memory is called "Buffer memory". To use FROM· FROMP/TO·TOP instructions appropriately, a programmer must know the memory map of the target special module. Every special module which has a shared memory has a map in its manual to guide users.

1. FROM/FROMP instruction

FROM/FROMP instruction reads Word data from shared memory of special module, and stores them to the internal device of CPU. The data contain such as the converted value of AD module, the temperature value of RTD or TC module, etc.

The typical usage of the instruction can be represented by following LD.

Form	Content	Remarks
S1	Slot number where the special module is installed	H00 01: Slot No.1 *As PLC-ES Series have no expansion function. So Upper No. is H00
52	Start address of buffer memory	Check the buffer memory address of the module as buffers memory start address of each module varies.
S3	Start address of the device where read data are stored	Save the value from buffer memory of module from device area of CPU.
S4	Number of words to read	Save a number of data to S4-designated area in order as the number of data(word) to read.

[Table 8] Notation and form of FROM / FROMP instruction

(1) S1 (slot number)

Maple Systems PLC can be expanded up to 11 modules.

The first operand of FROM / FROMP instruction must be the slot number. The upper Byte is assigned as 00 and the lower Byte is assigned as slot number.

[Figure 10] Example of PLC-ES Series module extension

(2) S2 (Start address of buffer memory)

Designate the start address of buffer memory to read. Please refer to the manual or quick-reference guide of objective module.

(3) S3 (Start address of device)

Designate the start address of device where read values will be stored. Y/M/L/K/D/Z areas are available.

(4) Number of words to read and store

Designate the number of Words to read and store.

Example 1: How To Use FROM/FROMP Instruction

The following is an example program which reads one word and eight words. It assumes the special module is IO-SA0202Y and installed in fourth slot.

Address		Details	Default	DAM
Hex.	Dec.	Details	Default	PC/VV
OH	0	CH.1 Digital conversion value (AD)		R
1H	1	CH.2 Digital conversion value (AD)	-	R
2H	2	CH.1 Precise value (AD)	-	R
ЗH	3	CH.2 Precise value (AD)		R
4H	4	CH.1 Percentile value (AD)	-	R
5H	5	CH.2 Percentile value (AD)	-	R
6H	6	High alarm status (AD)	-	R
7H	7	Low alarm status (AD)	-	R
8H	8	CH.1 Setup input signal range (AD)	0	R/W
9H	9	CH.2 Setup input signal range (AD)	0	R/W
AH	10	Setup Raw Value digital output (AD)	0	R/W
BH	11	CH.1 Average processing setting value (AD)	2000h	R/W
CH	12	CH.2 Average processing setting value (AD)	2000h	R/W
DH	13	CH.1 Maximum alarm setting value (AD)	0	R/W
EH	14	CH.2 Maximum alarm setting value (AD)	0	R/W
FH	15	CH.1 Minimum alarm setting value (AD)	0	R/W
10H	16	CH.2 Minimum alarm setting value (AD)	0	R/W
11H	17	CH.1 Digital Filter Constant (AD)	30	R/W
12H	18	CH.2 Digital Filter Constant (AD)	30	R/W
13H	19	DA Enable/Disable setup (DA conversion)	0	R/W
14H	20	CH.1 DA output type (Current 2types, Voltage 4types)	0	R/W
15H	21	CH.2 DA output type (Current 2types, Voltage 4types)	0	R/W
16H	22	CH.1 DA Range of digital value	0	R/W
17H	23	CH.2 DA Range of digital value	0	R/W
18H	24	CH.1 DA Channel Hold/Clear	0	R/W
19H	25	CH.2 DA Channel Hold/Clear	0	R/W
1AH	26	CH.1 digital output value (DA)	0	R/W
1BH	27	CH.2 digital output value (DA)	0	R/W
1CH	28	AD / DA Resolution setting	0	R/W
1DH	29	Error Code	-	R
1EH	30	OS Version	-	R
F10				
Always_ON	Reads a r	measured value of CH1, and stores it in D00.		
Always_Of	4		<u>D0 8</u>	

2. TO/TOP instruction

'TO/TOP' instruction writes word data to shared memory of special module such as DA modules. The typical usage of the instruction can be represented by following LD.

[Figure 11] How to TO/TOP instruction

Form	Content	Note
	Slot number where the special	H00 01: 1 st Slot
S1	module is installed. Lower: Slot	*PLC-ES Series Upper No. is H00.
	No.	
	Start address of the point where	Each modules have different start address of
S2	Start address of the point where	Buffer memory. Please check the address of
	Burler memory will write	Buffer memories you use.
52	Constant value or start address of	Device area or constant value where to write
22	device where to write	at Buffer memory of module.
		Write value starting at the designated area of
S4	Length of words to write	S4 by turns, as many as data (word) which
		will be written by Buffer memory address.

[Table 9] Notation of TO/TOP instruction in use and meaning of its form

(1) S1 (slot number)

Please refer to 'FROM / FROMP' instruction.

(2) S2 (Start address of user program memory)

Designate the start address of user program memory where to write. Please refer to the manual or quick-reference guide of objective module.

(3) S3 (Constant value or start address of device)

Designate the start address of word device storing value to write. X/Y/M/L/K/F/D/Z devices are available. This operand can be designated with constant value to write. In this case, only one value can be written to user program memory at once.

(4) Number of words to write

Designate the number of words to write.

Example 2: How To Use TO/TOP Instruction

The following is an example program which writes one word and eight words. It assumes the special module is IO-SA0202Y and installed in fourth slot.

Address		Details	Default	Dav
Hex.	Dec.	Details	Default	PC/VV
OH	0	CH.1 Digital conversion value (AD)		R
1H	1	CH.2 Digital conversion value (AD)	-	R
2H	2	CH.1 Precise value (AD)	-	R
3H	3	CH.2 Precise value (AD)	-	R
4H	4	CH.1 Percentile value (AD)	-	R
5H	5	CH.2 Percentile value (AD)	-	R
6H	6	High alarm status (AD)	-	R
7H	7	Low alarm status (AD)	-	R
8H	8	CH.1 Setup input signal range (AD)	0	R/W
9H	9	CH.2 Setup input signal range (AD)	0	R/W
AH	10	Setup Raw Value digital output (AD)	0	R/W
BH	11	CH.1 Average processing setting value (AD)	2000h	R/W
CH	12	CH.2 Average processing setting value (AD)	2000h	R/W
DH	13	CH.1 Maximum alarm setting value (AD)	0	R/W
EH	14	CH.2 Maximum alarm setting value (AD)	0	R/W
FH	15	CH.1 Minimum alarm setting value (AD)	0	R/W
10H	16	CH.2 Minimum alarm setting value (AD)	0	R/W
11H	17	CH.1 Digital Filter Constant (AD)	30	R/W
12H	18	CH.2 Digital Filter Constant (AD)	30	R/W
13H	19	DA Enable/Disable setup (DA conversion)	0	R/W
14H	20	CH.1 DA output type (Current 2types, Voltage 4types)	0	R/W
15H	21	CH.2 DA output type (Current 2types, Voltage 4types)	0	R/W
16H	22	CH.1 DA Range of digital value	0	R/W
17H	23	CH.2 DA Range of digital value	0	R/W
18H	24	CH.1 DA Channel Hold/Clear	0	R/W
19H	25	CH.2 DA Channel Hold/Clear	0	R/W
1AH	26	CH.1 digital output value (DA)	0	R/W
1BH	27	CH.2 digital output value (DA)	0	R/W
1CH	28	AD / DA Resolution setting	0	R/W
1DH	29	Error Code	-	R
1EH	30	OS Version	-	R
12				
first_Er	nable outp afety	TOP H0003 23 puts of all channels (CH1 - CH8, DA module needs this step for	D15 Or	1
s_ON	-	TOP H0003 1	D0	1
10			D0	8
S ON			DU	0

Writes 8 output values to CH1 - CH8 by single instruction. Output values are stored in D00 ~ D07

Appendix 2 Method of Address Allocation

1. Address Allocation

Bit Device	Notation	Word Davies Notation
Bit	Word	Word Device Notation
X 0 0 0 F Decimal Notation (Word) (Bit)	M 0 1 2 0 Decimal H Hexadecimal Notation (Word) (Bit=0)	D 0 1 2 9 Decimal Notation (Word)

[Figure 12] Notation of each Bit/Word device

(1) Bit Data Designation

Composition	[Device Symbol] + [Card No.] + [Bit No.]	
Device Symbol	X, Y, M, K, L, F	
Card No.	Notated in 3 digits of decimal number	
Bit No.	Notated in 1 digit of hexadecimal number	
Example	X000E, Y0012, M034F, K0120, L023C, F0093	

(2) Word Data Designation

Composition	[Device Symbol] + [Card No.]
Device Symbol	D, Z, T, C
Card No.	Notated in 4 digits of decimal number
Example	D1234, Z0001, T0011, C1023

(3) Timer, Counter Output Designation

Composition	[Device Symbol] + [Bit No.]
Device Symbol	Т, С
Card No.	Notated in 4 digits of decimal number
Example	T0003, C0567

(4) Step Controller Pin Designation

Composition	[Device Symbol] + [Card No.] + [.] +[Bit No.]	
Device Symbol	S	
Card No.	Notated in 2 digits of decimal number	
Step No.	Notated in 2 digits of decimal number	
Example	S00.00, S12.78	

(5) Designating Bit Device to Word (Card) Unit

Composition	[Device Symbol] + [Card No.] + [0]
Device Symbol	X, Y, M, K, L, F
Card No.	Notated in 3 digits of decimal number
Example	X0110, Y0330, M0440, K0000, L0040, F0130

2. I/O Address Allocation

I/O Address Allocation is to assign each modules a number to output the data from the input module. Address number starts from No.0. Analog, Communication, Special modules and empty slots occupy 16pins (1Word).

[Figure 13] I/O Address Allocation of PLC-ES Series

Composition: CPU 32-pin + 32-pin Output Module +32-pin Output Module
 + 16-pin I/O Module +16-pin I/O Module + Output 16-pin + Analog Module
 16-pin + Communication Module 16-pin

[Figure 14] Example of PLC-ES Series Module composition

3. X/Y I/O area allocation

(1) X area (Bit / Output device)

This is an Input pin which receives a signal from Input Card. This is a read-only device which user cannot input the value randomly. X area is Bit Type. It means that the size of detailed table signifies the number of Bit. In case it is used as Word Type, it is same as the Word Instruction of Bit Device.

- I/O Allocation: Device Allocation of X/Y area of PLC Modules (I/O Card / Special Card), except CPU.

1. PLC Card occupies 16-pin (1Word) as a default.

2. I/O Card under 16-pin: occupies 16-pin (1Word).

3. 32-pin I/O Card: occupies 32-pin (2Word).

4. Special Card except I/O Card occupies 16-pin (1Word).

It outputs "Y20" when "X00" is ON.

(2) Y area (Bit / Output Device)

This is an output pin which shows the result of calculation by Output Card. Y area is Bit Type. It means that the size of detailed table signifies the number of Bit. In case it is used as Word Type, it is same as the Word Instruction of Bit Device.

- I/O Allocation: Device Allocation of X/Y area of PLC Modules (I/O Card / Special Card), except CPU.

1. PLC Card occupies 16-pin (1Word) as a default.

2. I/O Card under 16-pin: occupies 16-pin (1Word).

3. 32-pin I/O Card: occupies 32-pin (2Word).

4. Special Card except I/O Card occupies 16-pin (1Word).

It outputs "Y20" when "X00" is on.

4. Features

I/O X, Y respond to external devices. X is to receive the signal of input device such as Push button switch, Limit switch and etc. Y is to convey the calculation results from Output Device such as Solenoid Valve, Motor, Lamp and etc.

Input section X conserves the input status inside of PLC which enables to use the A, B pin. Output section Y only uses the A-pin output.

[Figure 15] Example of I/O configuration.

[Figure 16] I/O Area Implementation Method

As in Figure 19, X, Y area have one-to-one responding area on the one pin of each I/O Module. While PLC is scanning, it calculates with the memory (X, Y) inside of the CPU, regardless of status of I/O Module. After the calculation, it outputs the content of inner memory Y which responds to the output. Later, it saves the pin-status to the inner memory X which corresponds to Input, for the next calculation.

INDEX

[Figure Reference List]

[Figure 1] Route to check software version ······ 2p
[Figure 2] Route to check CPU firmware ······ 3p
[Figure 3] PWM module appearance 5p
[Figure 4] Arrangement of terminals and its notations ······ 6p
[Figure 5] Data exchange between PWM module and CPU ······
[Figure 6] Definition of PWM output and duty cycle
[Figure 7] Example of duty cycle control (PWM) ······ 16p
[Figure 8] Ejecting order in case of module replacement ······ 27p
[Figure 9] How to use FROM/FROMP instruction 29p
[Figure 10] Example of PLC-ES Series module extension
[Figure 11] How to use TO/TOP instruction 32p
[Figure 12] Notation of each Bit/Word device
[Figure 13] I/O Address Allocation of PLC-ES Series
[Figure 14] Example of PLC-ES Series Module composition
[Figure 15] Example of I/O configuration
[Figure 16] I/O Area Implementation Method ····································

[Table Reference List]

[Table 1] General specification of PWM module
[Table 2] I/O Specification of PWM module 8p
[Table 3] Usage of each pin of PWM module
[Table 4] Usage and meaning of each buffer memory (PWM module) 11p
[Table 5] Available point of PWM output ······ 14p
[Table 6] Terminal No. of the frequency group ······ 15p
[Table 7] Valid set-up range of Duty cycle upon the frequency range
[Table 8] Notation and form of FROM / FROMP instruction 29p
[Table 9] Notation of TO/TOP instruction in use and meaning of its form

Version History

Released Date	Version	Description
04/08/2025	V1.0	First Edition

Your Industrial Control Solutions Source www.maplesystems.com

AW-10101171 REV00

Maple Systems, Inc. | 808 134th St. SW, Suite 120, Everett, WA 98204 | 425.745.3229

MapleSystems.com